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H U M A N - C E N T E R E D  C O M P U T I N G

Seven Cardinal Virtues of 
Human-Machine Teamwork: 
Examples from the DARPA 
Robotic Challenge

and avoided for the ills they breed. Here, we pres-
ent seven design principles to be understood and 
embraced for the virtues they engender.

The cardinal virtues of classical antiquity that 
were adopted in Christian tradition included justice, 
prudence, temperance, and fortitude (courage). As 
we’ll show in this essay, in effective human- machine 
teamwork we can also see virtues at play—namely 
clarity, humility, resilience, benefi cence (helpful-
ness), cohesiveness, integrity, and thrift.

As we unfold the principles that enable these vir-
tues to emerge, it will become clear that fully inte-
grating them into the design of intelligent systems 
requires the participation of a broad range of stake-
holders who aren’t always included in such discus-
sions, including workers, engineers, operators, and 
strategic visionaries developing research roadmaps. 
The principles aren’t merely for the consumption 
of specialists in human factors or ergonomics.

We illustrate these principles and their resul-
tant virtues by drawing on lessons learned in the 
US Defense Advanced Research Projects Agency 
(DARPA) Robotics Challenge (DRC).

DARPA Robotics Challenge
The primary goal of the DRC is to develop robots 
capable of assisting humans in responding to  natural 
and man-made disasters. The robots are  expected to 
use standard tools and equipment used by humans 
working in messy spaces engineered for humans 
to accomplish their mission—hence, a reliance on 

 humanoid robots (www.darpa.mil/Our_Work/TTO/
Programs/DARPA_Robotics_Challenge.aspx).

The fi rst event of the DRC was the Virtual Ro-
botics Challenge (VRC). Twenty-six teams from 
eight countries qualifi ed for the competition. The 
VRC was carried out in a virtual environment and 
involved the remote operation of a simulated At-
las humanoid robot, created by Boston Dynamics. 
There were three tasks to complete: fi rst, navigat-
ing complex terrain that included mud, hills, and 
debris; second, picking up a hose, attaching it to 
a spigot, and turning a valve; and third, entering 
a vehicle, driving on a road with turns and obsta-
cles, and then getting out of the vehicle.

In the second competition event, the top eight 
teams of the VRC were provided with an actual At-
las robot. Additionally, eight other teams used ro-
bots they had purchased or designed themselves. 
Atlas is a hydraulically powered humanoid ro-
bot that weighs 150 kilograms (330 pounds) and 
stands 1.88 meters (6 feet, 2 inches) tall. The ro-
bot has 28 degrees of freedom, with six in each ma-
jor appendage, one in the neck, and an additional 
three in the pelvis.

The trials consisted of eight tasks, including 
driving through an obstacle course, walking over 
slanted ramps, ascending a ladder, removing de-
bris from a doorway, and attaching a fi re hose to 
a spigot. Each task had to be completed in 30 min-
utes. The robot operator was required to be out 
of the line-of-sight of the robot at all times. Addi-
tionally, DARPA provided bandwidth constraints 
by introducing a network shaper that oscillated 
throughput between “good” (1 Mbps speed and 
100 ms delay) and “bad” (100 Kbps speed and 
1,000 ms delay) communications.

This article plays counterpoint to our previous 

discussions of the “seven deadly myths” of au-

tonomous systems.1,2 The seven deadly myths are 

common design misconceptions to be acknowledged 
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In the VRC, IHMC was the top-
scoring team. In the DRC Trial, IHMC 
placed second overall, and first among 
teams using the Atlas robot. Although 
this placing was due to several factors 
(including innovative walking control 
algorithms and agile software devel-
opment practices), we’re convinced 
that this success can be attributed to 
the “virtues” obtained by observance 
of the principles of effective human-
machine teamwork described below. 
To ground these principles in expe-
rience, we refer to events from the 
DARPA competitions.

Lessons Learned: Principles 
of Teamwork
Here are the principles of teamwork 
that enable the seven virtues.

1. Focus on improving mission per-
formance of the work system, not 
on maximizing autonomous capa-
bilities. It’s a natural temptation for 
technologists to focus their attention 
on technology. For autonomy enthu-
siasts, giving in to this temptation of-
ten leads to carrying out a full-court 
press to implement strategies that de-
pend exclusively on autonomous ca-
pabilities for their success, even in 
cases where this goal may prove less 
reliable or more expensive than al-
ternatives that leverage the potential 
strengths of human-robot teamwork.3

DARPA wanted to encourage as 
much reliance on autonomy as possi-
ble. One of the ways they hoped to ac-
complish this in the VRC was to impose 
limits on the amount of communication 
between operators and the robot—forc-
ing the robot to do as much as possible 
on its own. Although DARPA dropped 
the communication limits during the 
subsequent DRC phase, many teams 
still succumbed to the temptation to fo-
cus effort on minimizing bandwidth to 
the neglect of maximizing overall mis-
sion performance. By way of contrast, a 

team could be better served by using all 
of the bandwidth available, so long as it 
contributed toward mission success.

In asserting this first principle, it’s 
important not to be misunderstood. 
Increased investment in research and 
engineering for greater autonomous 
capabilities is undeniably worth-
while as part of an overall strategy 
to accomplish important work in an 
effective fashion. Moreover, there 
are situations where increased self
sufficiency and self-directedness (the 
basic dimensions of autonomy—see 
the related work4) are not only de-
sirable but absolutely necessary (for 
example, distant planetary probes that 
must operate for long periods without 
communication from ground control).

However, many kinds of work 
aren’t subject to such limitations. In 
these cases, it’s evident that we should 
rely on whatever combination of 
human and machine abilities is most 
likely to get the job done reliably and 
cost-effectively. This is particularly 
true in light of the fact that today’s 
so-called autonomous technology has 
proven fragile due to its deficiencies in 
anticipating and recognizing problems 
that may inhibit mission success5,6 and 
in its inability to generate flexible al-
ternatives to address them.7 These are 
important characteristics for any work 
system that expects to accomplish 
complex work in the real world.

Moreover, for certain aspects of the 
DRC competition, pursuing flawless 
and genuinely self-sufficient and self-
directed capability were indeed the 
path to successful task completion. 
Walking is an example of this. It’s ar-
guably impossible to develop a method 
for the human to assist a bipedal ro-
bot in balancing when controlling it 
remotely with a 500-ms delay. For this 
reason, we vigorously pursued robust 
dynamic balancing algorithms. How-
ever, the requirement for self-suffi-
ciency and self-directedness in dynamic 

balancing doesn’t generalize to other 
aspects of walking, such as planning 
and obstacle avoidance.

Autonomous driving provides an-
other example. In the VRC, the task 
involved driving in a simulated world 
on a well-marked road with consistent 
lighting. This was a task where an au-
tonomous solution seemed viable and, 
for that reason, the Institute for Hu-
man and Machine Cognition (IHMC) 
developed two different driving algo-
rithms to do the job. However, after a 
pre-competition evaluation, we deter-
mined that a teleoperation-style driv-
ing method gave us the best chance for 
mission success.

The Lesson: In competitions such 
as the DRC, carrying out the mission 
successfully in an effective, timely, 
frugal, and resilient manner is what 
counts—regardless of how much or 
how little autonomy is employed to 
do so. This was also true of the Mars 
Rover mission, the Deep Horizon oil 
spill ROV repair mission, and many 
other important occurrences. Focus-
ing on mission performance makes 

Figure 1. Atlas robot provided by Boston 
Dynamics. Atlas is a hydraulically 
powered humanoid robot that weighs 150 
kilograms (330 pounds) and stands 1.88 
meters (6 feet, 2 inches) tall. The robot has 
28 degrees of freedom, with six in each 
major appendage, one in the neck, and an 
additional three in the pelvis.
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it easy to determine how to allocate 
scarce resources to potential design 
and development tasks. We simply ask 
the question: “Does this approach in-
crease or reduce the chances of mis-
sion success?”

The Virtue: Clarity—a focus on 
mission performance provides a 
straightforward criterion for decision 
making about the role autonomy can 
best play in a given situation.

2. Assess the sweet spot in develop-
ment effort payoff. In our previous 
essays about the myths of autonomy, 
we argued that “complete” auton-
omy is hard or—perhaps more accu-
rately—impossible in all but the most 
trivial tasks. In the DRC, we often 
heard the lament: “If we only had two 
more weeks, we could have gotten the 
technology working perfectly.” How-
ever, experience has taught us that the 
perfect solution will always be two 
weeks later than our current deadline. 
Achieving the last fraction of auton-
omous capability in a robust and re-
silient manner is always a challenge, 
because it requires dealing with every 
variation in context and circumstance. 
From a practical perspective, it’s a los-
ing proposition because it wastes pre-
cious development time while simul-
taneously increasing system fragility. 
As evidence, even though the chal-
lenges in both the VRC and DRC Tri-
als were specified in great detail prior 
to the competition, there were no fully 
autonomous solutions demonstrated 
for any of the tasks.

Designing for effective human-ma-
chine teamwork is frequently the most 
effective way to increase overall mis-
sion performance. People naturally 
fill many of the dimensions that prove 
most difficult for machines: perception, 
judgment, creativity, and so forth. Peo-
ple are amazingly flexible and adaptive. 
Their participation often allows ma-
chines to work out of otherwise fatal 

situations. While it’s true that humans 
make mistakes, machines do, too.6 And 
though machines can sometimes re-
cover from their own mistakes, people 
are remarkably adept at doing so.

For example, the IHMC DRC team 
decided not to pursue machine percep-
tion. There were several tasks that re-
quired high-quality object recognition 
and localization. Given the limited 
number of items to recognize (such as 
the hose, the valve, and obstacles to 
walking) and the detailed advanced 
descriptions provided by DARPA, it 
seemed that autonomous perception 
routines might be workable. However, 
after analyzing the problem, we real-
ized the perception tasks were both 
high risk (since the algorithms were 
likely to be frail) and low reward 
(since the task is trivial for a human). 
Our team saved significant time by not 
investing in complex perception and 
planning algorithms and instead de-
voting our resources to developing ca-
pabilities that would allow the human 
to be an effective teammate with the 
robot. By strategically ruling out the 
100-percent solution (that is, full au-
tonomy or full teleoperation) we could 
avoid some of the hardest problems.

Even when pursuing autonomy, it 
may be worth investing some of that 
time in an approach that will enable 
human-machine teamwork. As an ex-
ample, in DRC we pursued an auton-
omous valve-turning capability. The 
goal wasn’t to complete the entire valve 
task, but merely turn a single valve 
that’s currently positioned directly in 
front of the robot and is in reach of 
the arms. The initial development took 
about a week, but it didn’t work very 
well. Development and improvements 
continued through the following weeks 
with slow and steady progress. As the 
deadline approached, we began to de-
velop a parallel approach that would 
rely on human-machine teamwork. 
This approach was ready in less than a 

week and ended up performing much 
more reliably than the autonomous 
alternative. The teamwork approach 
wasn’t merely teleoperation. It used 
specific aspects of the autonomous so-
lution, but didn’t fully rely on it. Arm 
sequencing and general positioning 
were automated, but the most difficult 
part where the hand needed to contact 
the valve involved human oversight 
and adjustment to ensure success.

The Lesson: An 80-percent auton-
omy solution is always easier than a 
100-percent one. Indeed, achieving 
the last 20 percent of capability is al-
ways the most challenging part of the 
problem. Relying on the human is a 
good way—sometimes the only way—
to cover the remaining 20 percent.

The Virtue: Humility—by admit-
ting that the solution probably won’t 
be the desired fully autonomous ro-
bot, you can design better for the sys-
tem that you will actually have.

3. If you don’t plan to fail, you fail to 
plan. This is the contrapositive of Ben-
jamin Franklin’s saying, “If you fail to 
plan, you plan to fail.” In robotics, if 
you do not plan to fail, then you are 
failing to plan. Uncertainty and unex-
pected events are part of reality in ro-
botics, and the solution is to design-in 
resilience from the beginning.

As an example, to control a robotic 
arm, a position and orientation in 3D 
Cartesian space must be specified as a 
goal. However, the Atlas robot has six 
degrees of freedom in its joints for each 
arm. Inverse kinematics provides a 
mathematical method for figuring out 
how to control each joint angle so as 
to achieve the desired goal. Allowing 
the operator to simply drag a graphic 
depiction of a virtual arm to specify a 
desired position and orientation and 
using inverse kinematics to determine 
the joint angles is an easy way to posi-
tion the arms. In fact, this method was 
used by IHMC as part of virtually all 
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of the arm commands executed during 
the five hose task runs of the VRC.

Even though the virtual arms were 
extremely effective, we maintained sup-
port for other alternatives, specifically 
joint-level control. This was particularly 
important when the solution of the in-
verse kinetics equations resulted in a 
singularity, a position that didn’t afford 
recovery by mathematical means. This 
happened less than one percent of the 
time—however, if we hadn’t developed 
this alternative we would have failed in 
three out of the five runs that required it.

Another good example of planning 
to fail occurred during one of the driv-
ing tasks. The car went off the edge 
of the road during a sharp turn, and 
needed to perform a backup. We had 
an “autonomous” method of switch-
ing the car into reverse, but it failed be-
cause the robot had been jostled as the 
vehicle left the road and was no lon-
ger in the correct position. The support 
for observability that we had built into 
the work system involved observability 
and directability (see Virtue 5, below), 
which allowed the operator to cor-
rectly assess the problem and enabled 
the engagement of reverse by alterna-
tive means. The point to be made here 
is that our high score was obtained 
through resilient performance, not 
flawless performance.

The Lesson: Failure is the result of 
having only one way to succeed. Re-
silience, on the other hand, is the re-
sult of having many possible ways to 
recover from failure on the fly.

The Virtue: Resilience—recogniz-
ing inevitable problems and having 
flexible options to address them.8

4. Think “combine and succeed,” not 
“divide and conquer.” Most attempts 
at implementation of human-machine 
work systems rely on schemes whereby 
entire tasks are allocated to a person 
or a machine. This approach not only 
introduces a single point of failure for 

a given task, but also hinders others 
from contributing collaboratively to a 
teammate’s task performance in help-
ful ways.

That said, it’s not simply a matter of 
putting a human “in-the-loop.” And it’s 
certainly not a matter of relegating the 
human to be “on-the-loop,” as some 
have recently advocated. It requires 
understanding where people and ma-
chines can each best contribute, and 
knowing how to design a work system 
to support the kind of interdependence 
that enables humans and machines to 
work effectively as teammates.

Approaches to human-machine 
teamwork typically handle the topic in 
a manner that’s too abstract to be use-
ful for design.9 To address this need, we 
developed an approach to human-ma-
chine design we call coactive design.10 
It relies on a method that identifies ar-
eas where the human-machine work 
system can be made more flexible by 
providing alternative ways to recog-
nize and handle unexpected situations.

For example, some parts of the VRC 
hose task required “full autonomy” 
from the robot (such as dynamic bal-
ancing during walking). On the other 
hand, since the robot had no autono-
mous perception, the human was re-
quired to perform all recognition 
tasks. However, we found that in sev-
eral cases the main performer of a task 
(robot or human) could be assisted by 
the other supporting team members. 
Identifying and developing capabilities 
for support of this kind allows team-
mates to combine and succeed, espe-
cially when the teammates involved 
(humans and robot) have complemen-
tary strengths and weaknesses.

In connection with this principle, 
it’s important to remember Principle 
3, particularly focusing on how com-
bining can mitigate some risk. After 
performing an analysis of interdepen-
dence of the human and the robot, it 
isn’t enough merely to select one of 

the possible options for accomplishing 
a given task. In fact, our goal was to 
support as many options as time and 
money practically afford. Enabling 
multiple options is what provides the 
flexibility needed to ensure resilience.

The Lesson: In contrast to the 
function allocation approach, where 
the question is, “Which team member 
can perform the task best?” high-per-
forming teams think through many 
different ways to perform the same 
task, and ask “How can each team 
member assist the other team mem-
ber performing the task and what is 
required to support that assistance?”

The Virtue: Helpfulness—identi-
fying the different ways that human 
and robot teammates can assist each 
other getting the job done.

5. Design for teamwork in addition 
to taskwork. What distinguishes joint 
activity from individual activity? It’s 
the need to support the mutual observ-
ability, predictability, and directability 
(OPD) among team members neces-
sary to support their interdependence. 
Because OPD is a two-way property, it 
should shape the design of both the in-
terface of a human operator and the 
robot’s capabilities.

Observability means making per-
tinent aspects of one’s status, as well 
as one’s knowledge of the team, task, 
and environment observable to oth-
ers. Since interdependence is about 
complementary relations, observabil-
ity also involves the ability to observe 
and interpret pertinent signals. This 
is one of the challenges for making 
machines a team player.11 Work in 
the HRI domain12 lists team knowl-
edge as an important facet of human-
agent interaction. Observability plays 
a role in many teamwork patterns 
(such as monitoring progress and pro-
viding backup behavior).

Predictability means one’s ac-
tions should be sufficiently observable, 
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reliable, and understandable that others 
can plan their own interdependent ac-
tions accordingly.11,13 Predictability may 
involve the use of a priori agreements or 
it may involve the use of model-based 
regulation of activities.14 Predictability is 
also essential to teamwork patterns such 
as synchronizing actions and achieving 
efficiency in team performance.

Team members can make use of 
what they observe and predict only to 
the degree that the other team mem-
bers afford directability. Directability 
means one’s ability to influence and 
be influenced by other teammates. 
Directability requires affordances for 
both explicit commands (such as task 
allocation or role assignment) and 
subtler influences. Such accommoda-
tions include the ability to produc-
tively incorporate “soft” commands 
in the form of guidance, suggestions, 
or warnings.11,12 Teamwork patterns 
that require directability include re-
questing assistance and querying for 
input during decision making.

The need for observability directs 
designers to focus on questions such 
as “What information needs to be 
shared?” “Who needs to share with 
whom?” and “When is the informa-
tion relevant?” It’s important to re-
member that it isn’t just about what 
information is shared, but also about 
what’s not shared. Sometimes too 
much information can be just as big 
a problem. In each case—whether for 
observability, predictability, or direct-
ability—the goal of a designer isn’t to 
maximize or minimize OPD. It’s to at-
tain sufficient OPD to support the in-
terdependence among team members 
needed for resilient task performance.

An example from the work is the 
use  of scripting. At first, the IHMC 
team was confident in their ability 
to automate completely the grasping 
and lifting portions of the hose task. 
We used a script recorder to capture 
successful executions of grasping and 

lifting movements so they could be 
played back later to provide full au-
tomation. The problem with this ap-
proach is that it prevented operators 
from providing assistance to the robot 
when necessary. For example, there 
was no capacity for the robot to verify 
its own grasp. And by automating the 
process, we removed the opportunity 
for the operator to verify that things 
were going well. Interdependence 
analysis revealed the brittleness of this 
approach. To counter this problem, 
we enabled step-by-step playback of 
the script with supporting visuals so 
that the upcoming action would be 
observable and predictable enough 
to allow the operator to verify the 
grasp and abort the task, if necessary. 
Though this was an improvement, 
it didn’t solve the biggest problem: 
namely, that the robot couldn’t always 
reliably position its hand for grasping. 
So we added support to allow the op-
erator not just to verify the upcoming 
action but also to modify it if neces-
sary, or replay it, or even skip it if de-
sired—that is, to enable directability.

Designing support for OPD led to 
resilient performance. During the five 
hose tasks of the VRC, an average of 
10 scripts were used per run. Only 50 
percent of these were run without in-
tervention. We averaged nine pauses 
in script behavior to verify perfor-
mance and seven operator corrections 
to scripted actions per run. Even with 
operator intervention, eight of the 50 
scripts failed to accomplish their pur-
pose. Due to the flexibility in our sys-
tem to retry, make adjustments, and use 
different approaches, we were success-
ful in recovering from all eight failures.

The Lesson: Analysis of interdepen-
dence can provide insight into how 
design decisions, such as automating 
a task, might impact the overall work 
system. A solution designed in this 
manner allows for autonomous be-
havior, but with appropriate support 

for interdependence—meaning that 
the human can participate in the ac-
tivity in a collaborative manner.

The Virtue: Cohesiveness—possess-
ing the support mechanisms needed 
for the team to work together as one.

6. Designing for human-machine 
teamwork goes deeper than the user 
interface. There’s growing sentiment 
that algorithms and the interface can’t 
be designed separately.15,16 If a ma-
chine algorithm is designed as a black 
box whose operations aren’t observ-
able, predictable, and directable at an 
appropriate level of granularity and 
timeliness, even the best operator inter-
face will be to no avail. For this reason, 
the observability, predictability, and di-
rectability requirements of the human 
should be used not only to guide user 
interface design, but also the design 
of robot algorithms and behaviors. In 
fact, you can’t effectively separate these 
two aspects of design, as we saw in the 
scripting example discussed previously.

In the design phase of DRC, this 
approach helped us appreciate and 
understand the constraints and oppor
tunities as we tried to address eight 
new tasks. It also was invaluable in the 
redesign process, as it helped us under-
stand how we needed to modify both 
our algorithms and our interface to ac-
count for changes in moving from sim-
ulation to hardware. While the out-
ward result was a unique interface, the 
actual work involved integration of 
the algorithms and interface in a way 
that allowed the operator to make ef-
fective use of their perception, judg-
ment, and creativity in concert with 
the underlying control algorithms.

Enrico Casini and his colleagues17 
ran squarely into this issue in their 
need to develop an approach to sup-
port human involvement in automated 
data processing pipelines—in this case, 
large-scale sensor networks that rely 
on the popular Hadoop MapReduce 
framework. The aim of the approach 



November/december 2014	 www.computer.org/intelligent	 79

was to increase performance and 
throughput in the automated process-
ing and delivery of data throughout 
the pipeline while also providing the 
advantages of human participation 
at key intervention points along the 
way. Ultimately, to design for interde-
pendence, you would want to take ad-
vantage of specific ways in which all 
human capabilities—sensing, decision 
making, and acting—can be exploited 
to assist machines, and vice versa. 
These would constitute the universe of 
opportunities for human intervention.

The key finding of this study that 
relates to Principle 6 is that involving 
a human operator in an automated 
processing pipeline may require signif-
icant changes in machine algorithms 
that go beyond simply being able to 
make intermediate results available 
for human inspection. For example, 
due to the asynchronous nature of hu-
man intervention, care must be taken 
to ensure that once a user-made cor-
rection or assertion is introduced, all 
necessary adjustments and reprocess-
ing are performed. In addition, to 
make the best use of limited resources 
and processing capabilities, reprocess-
ing data in light of such corrections 
must be minimized.

The Lesson: Successful human-
machine teamwork requires more 
than an engineering solution to the 
machine capabilities. It also requires 
a holistic view that takes into account 
the requirements of the entire human-
machine work system in its applica-
tion context. Unless algorithms and 
user interfaces evolve together, sup-
port for OPD is impossible.

The Virtue: Integrity—a marriage 
of machine functionality and user in-
terface design with a deep commit-
ment for mutual support.

7. Don’t simply downsize human 
involvement; rightsize it. While the 
frequently touted promise of reduced 

manning through full autonomy has 
a natural appeal to organizations in-
tent on reducing their bottom line, re-
ality has a perverse way of shattering 
many such dreams.3,18 Neither cost 
reduction nor improved performance 
is a guaranteed consequence of re-
duced manning through so-called au-
tonomous operations. In the long run, 
the dual objectives of cost reduction 
and improved performance can only 
be achieved through greater team ef-
fectiveness—not by means of a false 
hope that the machine will do every-
thing for you on the cheap.

Part of working better is having the 
means to dynamically rightsize human 
involvement according to the task and 
situation at hand. The VRC involved 
different kinds of walking challenges 
(such as mud, hills, debris, and flat, 
open ground). For each kind of walk-
ing, the approach and optimal degree 
of human participation varied. For 
example, the operator was relatively 
unburdened in handling walks over 
flat, open ground because the system 
could be allowed to work more or less 
“autonomously.” However, when the 
robot was walking over more diffi-
cult terrain, more help from humans 
was required. Designing for these dif-
ferences allowed us to seamlessly in-
crease or decrease human involvement 
in the walking task without requiring 
a disruptive mode switch. The impor-
tance of this type of flexibility was fur-
ther heightened because the specific 
nature of each task wasn’t known in 
advance. It’s worth emphasizing that 
in any work situation of sufficient 
complexity, task requirements will 
change over time and new kinds of 
tasks will emerge—making the flex-
ibility and resilience enabled by effec-
tive human-machine teamwork an ab-
solute necessity.

The Lesson: Working less comes 
most easily through working better. 
Honest assessment of machine and 

human capabilities and design of op-
tions to enable resilient mission perfor-
mance are the mundane but essential 
elements of rightsizing human—and 
machine—involvement.

The Virtue: Thrift—cost reduction 
and resilient performance over the 
work system’s lifetime through the 
ability to dynamically rightsize.

The “seven deadly myths” of autono-
mous systems were so named not only 
because they cripple the performance 
of human-machine work systems in 
their own right, but also because they 
engender a host of other serious con-
sequences. In similar fashion, what 
makes the outlined principles of ef-
fective human-machine teamwork so 
powerful is that they allow a host of 
virtues to emerge and propagate. Chief 
among them is wisdom—knowing how 
to work smarter. 
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